메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
변경수 (부산대학교) 김구 (감사원(감사연구원)) 권준호 (부산대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.50 No.5
발행연도
2023.5
수록면
383 - 394 (12page)
DOI
10.5626/JOK.2023.50.5.383

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인공지능 기술이 발전함에 따라 인공지능 관련 공정성 문제가 주목받고 있다. 이에 따라 관련 연구가 많이 진행되었으나 모델 및 학습 방법 연구가 주를 이루고 있으며 근본적인 원인인 학습에 쓰이는 데이터 내에 존재하는 편향을 제거하기 위한 연구는 아직 미흡하다. 따라서 이 논문에서는 데이터 내에 존재하는 편향을 레이블 편향과 서브 그룹 편향으로 구분하고 편향을 제거함으로써 공정성이 향상된 데이터셋을 생성하는 시스템을 설계 및 구현한다. 제안하는 시스템은 서브셋 생성 단계와 편향 제거 단계로 구성된다. 먼저 서브셋 생성기는 기존 데이터 세트 내 각 값의 조합이 형성하는 고윳값들에 따라 단일 값만을 가지는 서브셋으로 나눈다. 이후 검증 데이터셋을 기반으로 기존 데이터셋을 검증하여 얻은 공정성 지표값을 기준으로 우세그룹과 약세그룹으로 서브셋을 구분한다. 다음으로 편향 제거기는 각 서브셋의 우세그룹을 대상으로 순차 추출 및 검증을 병행하여 약세그룹과의 차이를 줄이는 과정을 반복하여 서브셋에서 나타난 편향을 줄인다. 이후 편향이 제거된 서브셋들을 병합하며 공정한 데이터셋을 반환한다. 검증에 사용된 공정성 지표는 F1 score와 균등 확률(equalized odd)을 사용한다. 실제 Census income 데이터, COMPAS 데이터 및 Bank marketing 데이터를 검증 데이터로 사용한 포괄적인 실험을 통해 제안된 시스템이 더 나은 공정성 개선율을 산출하고 대부분의 기계 학습 알고리즘에서 더 높은 정확성을 제공함으로써 기존 기술을 능가한다는 것을 보여준다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 배경지식
4. 시스템 구성
5. 실험결과
6. 결론 및 향후 과제
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0