메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김홍직 (Hanbat National University) 이원복 (VISIONTECH) 이승호 (Hanbat National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제27권 제1호
발행연도
2023.3
수록면
116 - 121 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문에서는 딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조를 개발한다. 제안하는 복합 미생물 배양기는 수집한 복합 미생물 데이터에 대해 복합 미생물 데이터 전처리, 복합 미생물 데이터 구조 변환, 딥러닝 네트워크 설계, 설계한 딥러닝 네트워크 학습, 시제품에 적용되는 GUI 개발 등으로 구성된다. 복합 미생물 데이터 전처리에서는 미생물 배양에 필요한 당밀, 영양제, 식물엑기스, 소금 등의 양에 대해 원-핫 인코딩을 실시하며, 배양된 결과로 측정된 pH 농도와 미생물의 셀 수에 대해 최대-최소 정규화 방법을 사용하여 데이터를 전처리한다. 복합 미생물 데이터 구조 변환에서는 전처리된 데이터를 물 온도와 미생물의 셀 수를 연결하여 그래프 구조로 변환 후, 인접 행렬과 속성 정보로 나타내어 딥러닝 네트워크의 입력 데이터로 사용한다. 딥러닝 네트워크 설계에서는 그래프 구조에 특화된 그래프 합성곱 네트워크를 설계하여 복합 미생물 데이터를 학습시킨다. 설계한 딥러닝 네트워크는 Cosine 손실함수를 사용하여 학습 시에 발생하는 오차를 최소화하는 방향으로 학습을 진행한다. 시제품에 적용되는 GUI 개발은 사용자가 선택하는 물 온도에 따라 목표하는 pH 농도(3.8 이하) 복합 미생물의 셀 수(10⁸ 이상)를 배양시키기 적합한 순으로 나타낸다. 제안된 미생물 배양기의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과는, pH 농도의 경우 평균 3.7로, 복합 미생물의 셀 수는 1.7 × 10⁸으로 측정되었다. 따라서, 본 논문에서 제안한 딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조의 효용성이 입증되었다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-056-001493876