메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박성준 (숭실대학교) 류권상 (숭실대학교) 최대선 (숭실대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제33권 제3호
발행연도
2023.6
수록면
449 - 458 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인공지능은 빅데이터와 딥러닝 기술을 이용해 다양한 분야에서 삶의 편리함을 주고 있다. 하지만, 딥러닝 기술은 적대적 예제에 매우 취약하여 적대적 예제가 분류 모델의 오분류를 유도한다. 본 연구는 StarGAN을 활용해 다양한 적대적 공격을 탐지 및 정화하는 방법을 제안한다. 제안 방법은 Categorical Entropy loss를 추가한 StarGAN 모델에 다양한 공격 방법으로 생성된 적대적 예제를 학습시켜 판별자는 적대적 예제를 탐지하고, 생성자는 적대적 예제를 정화한다. CIFAR-10 데이터셋을 통해 실험한 결과 평균 탐지 성능은 약 68.77%, 평균 정화 성능은 약 72.20%를 보였으며 정화 및 탐지 성능으로 도출되는 평균 방어 성능은 약 93.11%를 보였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 제안 방법
IV. 실험
V. 고찰
VI. 결론
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-001475834