메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
옥지원 (성신여자대학교) 노현 (성신여자대학교) 임연섭 (성신여자대학교) 김성민 (성신여자대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제33권 제3호
발행연도
2023.6
수록면
549 - 559 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
5G 네트워크의 핵심 기술로 모바일 에지 컴퓨팅(Mobile Edge Computing, MEC)이 주목받음에 따라, 모바일 사용자의 데이터를 기반으로 한 5G 네트워크 기반 에지 AI 기술이 최근 다양한 분야에서 이용되고 있다. 하지만, 전통적인 인공지능 보안에서와 마찬가지로, 에지 AI 핵심 기능을 담당하는 코어망 내 표준 5G 네트워크 기능들에 대한 적대적 교란이 발생할 가능성이 존재한다. 더불어, 3GPP에서 정의한 5G 표준 내 Standalone 모드의 MEC 환경에서 발생할 수 있는 데이터 오염 공격은 기존 LTE망 대비 현재 연구가 미비한 실정이다. 본 연구에서는 5G에서 에지 AI의 핵심 기능을 담당하는 네트워크 기능인 NWDAF를 활용하는 MEC 환경에 대한 위협 모델을 탐구하고, 일부 개념 증명으로써 Leaf NWDAF에 대한 데이터 오염 공격 탐지 성능을 향상시키기 위한 특징선택 방법을 제안한다. 제안한 방법론을 통해, NWDAF에서의 Slowloris 공격 기반 데이터 오염 공격에 대해 최대 94.9%의 탐지율을 달성하였다.

목차

요약
ABSTRACT
I. 서론
II. 배경 지식
III. 관련 연구
IV. 5G MEC 환경에서의 NWDAF 위협 모델 및 배치 시나리오
V. 특징 선택을 통한 데이터 오염 공격 탐지 성능 향상
VI. 결론
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-001475925