메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Rajagukguk Rial Arifin (Kookmin University) Lee Hyunjin (Kookmin University)
저널정보
한국태양에너지학회 한국태양에너지학회 논문집 한국태양에너지학회 논문집 제43권 제3호
발행연도
2023.6
수록면
73 - 86 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Decomposed solar radiation models are commonly used to separate direct and diffuse irradiance from global irradiance. However, most of these models are designed to process hourly data, which may not be sufficient to capture the rapid changes in solar irradiance that occur within a shorter timescale. To address this issue, we examined the performance of existing decomposition models at different temporal resolutions ranging from 1 min to 1 h. We found that the errors in the decomposition models increased as the temporal resolution decreased. Specifically, as the timescale was reduced from hourly to every minute, the relative root-mean-square error (rRMSE) increased by more than 5%. These findings highlight the need to develop accurate models that can process sub-hourly data. Accordingly, we propose the use of deep learning models to estimate the direct irradiance using sub-hourly data. The proposed models significantly reduced the rRMSE by more than 7% compared to the existing models on a 1-min time scale. The results indicate that deep-learning models can provide accurate estimates of direct irradiance, even at sub-hourly temporal resolutions.

목차

Abstract
1. Introduction
2. Data description
3. Decomposition model
4. Deep learning model
5. Results and Discussion
6. Conclusions
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-563-001784574