메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeongseok Kang (Soongsil University) Kanghee Kim (Soongsil University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.17 No.2
발행연도
2023.6
수록면
80 - 92 (13page)
DOI
10.5626/JCSE.2023.17.2.80

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The emerging multi-queue solid state drives (SSDs) impose two challenges on I/O scheduling in the host operating system. First, the I/O scheduler should give a scalable performance in the number of processor cores to exploit the massive parallelism within the SSD. Second, it should provide performance isolation between the cores so that each core can schedule application I/O streams with a reserved bandwidth share. To cope with these challenges, we propose a novel I/O scheduler called mqFlashFQ. In mqFlashFQ, for every core to make a scheduling decision in parallel, we use a randomization technique to decentralize the existing FlashFQ algorithm, consequently, significantly reducing the inter-core synchronization overheads. Moreover, to provide a fair bandwidth share on a per-core basis, we present an accurate calibration method that determines the cost of each I/O request in terms of its direction and size. This method is distinguished in that it enables to provide a minimum bandwidth guarantee to each core with no garbage collection. Through our experiments with non-volatile memory express (NVMe) SSD products, we demonstrate that the proposed mqFlashFQ and calibration method give a scalable performance and a fair share of the bandwidth to each core for various I/O workloads.

목차

Abstract
I. INTRODUCTION
II. PRELIMINARIES
III. PROPOSED SCHEDULER
IV. EXPERIMENTAL RESULTS
V. RELATED WORK
VI. CONCLUSION AND FUTURE WORK
REFERENCES

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-569-001783128