메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조승용 (식품안전정보원)
저널정보
한국식품저장유통학회 Food Science and Preservation 한국식품저장유통학회지 제30권 제3호
발행연도
2023.6
수록면
459 - 471 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
뱀장어 생산단계 안전성조사 부적합여부에 영향을 미치는 특성변수를 베이지안 네트워크(BN) 모델을 적용하여 분석하였다. 2012년부터 2021년까지의 통합식품안전정보망(IFSIN)의 뱀장어 생산단계 안전성조사 데이터에 양식장의 HACCP 정보, 지리적 정보 및 용수환경 데이터를 연계하여 BN 모델을 수립하였다. 뱀장어의 부적합여부에 영향을 주는 특성변수로 양식장의 HACCP 인증여부, 양식장의 이전 5년간 검사대상 유해물질의 검출여부, 해당 양식장의 이전 5년간 부적합적발이력, 사용되는 용수환경의 적정성이 제안되었으며, 이때 용수환경의 적정성은 총대장균군과 총유기탄소량으로부터 산출되었다. 뱀장어 부적합이 발생할 확률이 가장 높은 경우는 지난 5년간 검사대상 유해물질의 검출이력이 있으면서 동시에 부적합 적발 이력이 있는 HACCP 인증을 받지 않은 양식장으로서, 용수환경도 총대장균군 또는 총유기탄소가 높아 오염이 의심되는 용수를 사용하는 경우로 이때 부적합이 발생할 확률은 24.5%로 뱀장어 생산단계 안전성 조사 시 부적합률인 0.26%의 94배 높았다. 2022년 1월부터 8월까지 뱀장어 양식장 안전성조사 결과를 시험용 데이터세트(6,785건 중 부적합 15건)로 하여 BN모델의 적정성을 검토하였다. 영향강도가 높았던 설명변수인 HACCP, 검출이력, 부적합이력으로 구성한 BN 모델을 시험용 데이터세트에 적용한 결과 부적합일 확률이 15.8%로 시험용데이터의 부적합률인 0.22%의 약 71.4배 개선할 수 있었다. 그러나 이 모델의 재현율은 0.2에 머물렀는데, 이는 특히 부적합항목인 유해물질의 기준 · 규격이 신설되어 해당 양식장에서 검사기록이 없는 경우와, 매우 드물게 발생하여 10년 동안 검출이력이 없어 학습데이터세트에는 없는 경우이었다. 베이지안 네트워크를 적용하여 부적합확률이 높은 생산단계 안전성 조사대상을 선정하게 되면 설명변수별로 시나리오에 따라 부적합확률을 설명가능하게 되어 다른 머신러닝 알고리즘을 적용하는 경우 지적되어온 설명불가능이라는 문제점을 해소할 수 있으며, 향후 안전성조사데이터 축적 시 용이하게 모델 업데이트가 가능하며 이를 통해 모델의 예측성능개선도 기대할 수 있다는 장점이 있다.

목차

Abstract
1. 서론
2. 재료 및 방법
3. 결과 및 고찰
4. 요약
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-059-001747872