메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kwang-Hyung Kim (APEC Climate Center) Young Jin Koh (Sunchon National University)
저널정보
한국식물병리학회 The Plant Pathology Journal The Plant Pathology Journal 제35권 제5호
발행연도
2019.10
수록면
459 - 472 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The increasing variation in climatic conditions under climate change directly influences plant-microbe interactions. To account for as many variables as possible that may play critical roles in such interactions, the use of an integrated modeling approach is necessary. Here, we report for the first time a local impact assessment and adaptation study of future epidemics of kiwifruit bacterial blossom blight (KBB) in Jeonnam province, Korea, using an integrated modeling approach. This study included a series of models that integrated both the phenological responses of kiwifruit and the epidemiological responses of KBB to climatic factors with a 1 km resolution, under the RCP8.5 climate change scenario. Our results indicate that the area suitable for kiwifruit cultivation in Jeonnam province will increase and that the flowering date of kiwifruit will occur increasingly earlier, mainly due to the warming climate. Future epidemics of KBB during the predicted flowering periods were estimated using the Pss-KBB Risk Model over the predicted suitable cultivation regions, and we found location-specific, periodic outbreaks of KBB in the province through 2100. Here, we further suggest a potential, scientifically-informed, long-term adaptation strategy using a cultivar of kiwifruit with a different maturity period to relieve the pressures of future KBB risk. Our results clearly show one of the possible options for a local impact assessment and adaptation study using multiple models in an integrated way.

목차

Materials and Methods
Results
Discussion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-481-001804610