메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
노희성 (한국건설기술연구원) 박기홍 (오산대학교)
저널정보
한국정보기술학회 한국정보기술학회논문지 한국정보기술학회논문지 제21권 제8호(JKIIT, Vol.21, No.8)
발행연도
2023.8
수록면
185 - 192 (8page)
DOI
10.14801/jkiit.2023.21.8.185

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존의 단일 센서를 이용한 도로 침수 시스템은 수위가 특정 수치에 도달할 때 경보를 주는 방식으로 도로침수 판단 및 초동대처가 어렵다. 따라서 본 논문에서는 CCTV를 이용한 실시간 도로 침수 시스템 개발을 위해 CNN 기반의 사전 학습모델 8개를 선정 및 구현, 학습 및 검증을 통해 성능을 비교하였다. 모델별로 batchsize 16, 120 epoch로 학습하였고, 실험 결과 딥러닝 학습모델들이 평균적으로 90%의 정확도를 보였다. 특히 정확도 측면에서는 ShuffleNet V1, SqueezeNet, ResNet-50 모델 순으로 성능이 우수하였다. 그러나 실시간 도로 침수 탐지와 예측을 위해서는 모델별 적정한 파리미터 수와 짧은 추론 시간이 요구되는 바, CCTV 한대당 10초에 1번씩 분석된다고 가정했을 때 ResNet-50 학습모델이 800대까지 수용할 수 있는 것으로 분석되었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 선행연구
Ⅲ. 도로 침수 탐지를 위한 딥러닝 모델 선정
Ⅳ. 도로 침수 탐지를 위한 딥러닝 모델별 성능 비교 및 평가
Ⅴ. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-004-001995073