메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤동희 (아주대학교) 유동연 (아주대학교) 이정원 (아주대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.50 No.9
발행연도
2023.9
수록면
795 - 804 (10page)
DOI
10.5626/JOK.2023.50.9.795

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
스마트팩토리의 핵심 설비인 협동 로봇에는 기기의 고장을 진단하기 위해 내부, 외부 센서로부터 데이터를 실시간으로 수집하고 결함을 예측하는 데이터 기반 결함 진단 방법이 도입되고 있다. 데이터 기반 결함 진단 방법은 학습을 위한 많은 양의 데이터가 필요하며, 특히 결함 상태로 레이블링된 대량의 데이터가 필수적으로 요구된다. 그러나, 산업 현장에서 실제 결함 데이터를 대량으로 얻기 어렵다. 따라서 본 논문에서는 비전 센서를 기반으로 협동 로봇 결함 상태의 출력을 정상 상태의 출력을 비교 분석하고, 분석된 출력 신호간의 편차를 바탕으로 모의 결함 주입 방법을 제안한다. 실제 결함 상태에서 수집된 협동 로봇 데이터는 제안하는 모의 결함 주입 상태에서 수집된 데이터로 대체 가능하다. 결함 주입 데이터로 학습된 모델의 성능과 실제 결함 데이터로 학습된 모델의 성능 비교 결과, 정확도의 경우 평균 0.97, 0.98로 차이가 거의 없음을 확인하여 제안하는 결함 주입 방법의 효용성을 검증하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 협동 로봇 결함 특성 기반 결함 주입 방법
4. 결합 주입 데이터 수집 및 검증
5. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-569-002049234