메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
홍영택 (중앙대학교) 박주한 (중앙대학교) 진대종 (중앙대학교) 이경재 (중앙대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2023년도 대한전자공학회 하계학술대회 논문집
발행연도
2023.6
수록면
2,890 - 2,894 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To interact with objects that a robot encounters for the first time, it is essential to obtain a complete 3D model, such as a mesh, of that object. However, scanning each new object with specialized 3D sensor to obtain a 3D model can be hard and expensive. Recently, NeRF has emerged as a solution that allows for learning the 3D model of an object with just a few photos. However, the original NeRF cannot model overall shapes like the bottom of objects since it assumes a static scene with rotating cameras. In this paper, we propose a methodology for training NeRF in a scenario where a fixed camera and object are rotating. Additionally, we quantify the uncertainty of the NeRF model to utilize active learning techniques, which efficiently capture uncertain areas of 3D model of the object by manipulating object.

목차

Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험 및 결과
Ⅳ. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0