메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Zhanliang Wang (Fujian University of Technology) Wei Zhang (Fujian University of Technology) Yiqun Huang (Fujian University of Technology)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.17 No.5
발행연도
2023.9
수록면
949 - 964 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study presented a meso-model for the fracture analysis of the reinforced concrete (RC) structure. A modeling method of RC meso-structure was proposed, and the rebars were allowed to separate from the concrete. The model was built using the cohesive zone model (CZM). The zero-thickness cohesive elements were adopted to characterize the mechanical behavior of potential fracture surfaces and rebar–concrete interfaces. The constitutive model for concrete was developed by considering the damage relation and friction effect, and the corresponding constitutive for the rebar–concrete interface (especially ribbed rebar) was developed by considering the influence of normal separation on the tangential bond–slip relation. To validate the proposed meso-model, a series of ribbed RC beams with an initial notch was designed and tested by four-point bending loading to obtain different fracture patterns. Through comparison, the developed RC meso-model was validated to simulate the RC structure’s fracture behavior appropriately. The influence of the rebar–concrete interface constitutive model on the simulation results was investigated. The investigation results indicate that neglecting normal separation would result in an overestimation of the structure’s stiffness and bearing capacity (the peak load was overestimated by more than 10%). Finally, an analysis was conducted on the energy consumption during the failure process of the RC beams. It was found that the proportion of energy consumption during tensile failure of the beam decreased from approximately 86% to 89% in the early stage to approximately 43% to 52% in the later stage, indicating a transition in the beam’s failure mode from tensile failure to shear failure.

목차

Abstract
1 Introduction
2 Meso‑modelling of the RC Structure
3 Four‑Point Bending Experiments of Ribbed RC Beams Without Stirrups
4 Numerical Analysis
5 Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-532-002061646