메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jingjian Cao (Jiangsu University) Cui Dai (Jiangsu University) Junfeng Qiu (Jiangsu University) Liang Dong (Jiangsu University)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.16 No.3
발행연도
2023.9
수록면
270 - 281 (12page)
DOI
10.5293/IJFMS.2023.16.3.270

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The bionic sawtooth structure has a good noise reduction effect on the middle and low frequency flow noise, but the current researches mostly focus on the airfoil noise reduction with limited sawtooth number, ignoring the search for the noise reduction law of the sawtooth structure parameters. In this paper, four structural parameters, including tooth number, height to width ratio, passivation ratio and angle of flow cut, are selected to study the optimization design of bionic sawtooth airfoil by numerical calculation method. A noise reduction method for bionic sawtooth airfoil optimization is proposed, and the sawtooth parameters with the optimal noise reduction effect are found. In this paper, the total sound pressure level is taken as the optimization objective, and the neural network algorithm fitting and adaptive simulated annealing algorithm are employed to optimize, and the rationality of the prediction results is evaluated by the method of manual supervision. The results show that the sawtooth number has the most obvious effect on the airfoil noise reduction effect, and the total sound pressure level after optimization is reduced by 0.55dB compared with that before optimization, and the noise reduction effect is mainly concentrated near the trailing edge of the airfoil.

목차

Abstract
1. Introduction
2. Airfoil Basic Parameters
3. Airfoil Modeling and Meshing
4. Numeral Calculation
5. Optimization of Noise Reduction of Bionic Sawtooth Airfoil
6. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088065369