메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임세헌 (Soongsil University) 김태근 (Soongsil University) 염동우 (Arizona State University) 윤성국 (Soongsil University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제72권 제10호
발행연도
2023.10
수록면
1,221 - 1,230 (10page)
DOI
10.5370/KIEE.2023.72.10.1221

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The predicted mean vote (PMV) model is widely used to measure thermal comfort for humans, which uses heating, ventilation, and air conditioning (HVAC) systems. However, the PMV model has limitations in satisfying individual person’s thermal comfort. As a result, a recent survey of occupants in buildings showed that the percentage of thermal discomfort is significantly high, despite the active use of the HVAC system. To address this issue, we propose a personalized thermal comfort prediction model based on machine learning that utilizes data from thermal sensation votes, indoor temperature, and humidity. We did an experiment for the data acquisition system, and four students participated. With these data, we develop a personalized thermal comfort prediction model. Among the five machine learning models, i.e., artificial neural network (ANN), linear regression (LR), support vector machine (SVM), ANN is selected showing best performamce. We formulate an optimization problem for the proposed personalized HVAC system, and its solution is derived using a genetic algorithm. The results of the thermal comfort of the personalized model are compared to the PMV model. It shows significant differences between the thermal comfort of the personalized model and the PMV model. Also, the thermal comfort performance and cost are evaluated through a building simulation.

목차

Abstract
1. 서론
2. 개인맞춤형 HVAC 시스템 문제 정식화
3. 사례 연구
4. 결론 및 고찰
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0