메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Manh-Tuan Ngo (Changwon National University) Changhyun Kim (Changwon National University) Minh-Chau Dinh (Changwon National University) Minwon Park (Changwon National University)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제28권 제5호
발행연도
2023.10
수록면
77 - 87 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
재생 에너지 생성에서 중요한 역할을 하는 풍력 터빈은 작동 상태를 정확하게 평가하는 것이 에너지 생산을 극대화하고 가동 중지 시간을 최소화하는 데 매우 중요하다. 이 연구는 풍력 터빈 상태 진단을 위한 다양한 신경망 모델의 비교 분석을 수행하고 센서 측정 및 과거 터빈 데이터가 포함된 데이터 세트를 사용하여 효율성을 평가하였다. 분석을 위해 2MW 이중 여자 유도 발전기 기반 풍력 터빈 시스템(모델 HQ2000)에서 수집된 감시 제어 및 데이터 수집 데이터를 활용했다. 활성화함수, 은닉층 등을 고려하여 인공신경망, 장단기기억, 순환신경망 등 다양한 신경망 모델을 구축하였다. 대칭 평균 절대 백분율 오류는 모델의 성능을 평가하는 데 사용되었다. 평가를 바탕으로 풍력 터빈 상태 진단을 위한 신경망 모델의 상대적 효율성에 관한 결론이 도출되었다. 본 연구결과는 풍력발전기의 상태진단을 위한 모델선정의 길잡이가 되며, 고도의 신경망 기반 기법을 통한 신뢰성 및 효율성 향상에 기여하고, 향후 관련연구의 방향을 제시하는데 기여한다.

목차

요약
Abstract
1. Introduction
2. Theoretical Foundation
3. Research Methodology
4. Results and Discussion
5. Conclusion and Future Developments
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088307380