메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sojeong Park (Pohang University of Science and Technology) Yeongjun Kim (Pohang University of Science and Technology) Jonggyu Jang (Pohang University of Science and Technology) Hyun Jong Yang (Pohang University of Science and Technology)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제48권 제11호
발행연도
2023.11
수록면
1,464 - 1,470 (7page)
DOI
10.7840/kics.2023.48.11.1464

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Massive multiple-input and multiple-output (MIMO) systems are efficient technologies that can meet the increasing need for larger user capacities and diverse requirements posed by massive machine-type communications and ultra-reliable low latency communications (URLLCs). In particular, massive MIMO systems that employ grant-free (GF) multiple access have recently been studied, aiming to effectively satisfy the uplink transmission requirements of URLLCs. However, the conventional approach to channel estimation in MIMO systems relies on orthogonal pilot signals, necessitating inter-device synchronization. This limitation causes challenges in the integration of GF multiple access with massive MIMO, due to the inherent difficulty in achieving device synchronization within GF multiple access. To overcome this limitation, we propose a learning-based channel estimation method in massive MIMO systems using non-orthogonal pilots. Numerical results demonstrate that the proposed scheme achieves a bit error rate of less than 10<SUP>-3</SUP> for scenarios with 32, 64, and 128 received antennas and 2 devices, as well as scenarios with 128 received antennas and 2 or 3 devices, at signal-to-noise ratio levels above 0 dB. These findings highlight the promising performance of our proposed method.

목차

ABSTRACT
Ⅰ. Introduction
Ⅱ. System Model
Ⅲ. Learning-based Channel Estimation Model
Ⅳ. Simulation Results
Ⅴ. Conclusions
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088354969