메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lei Jichong (University of South China) Yang Chao (University of South China) Zhang Huajian (University of South China) Liu Chengwei (University of South China) Yan Dapeng (Science and Technology on Reactor System Design Technology Laboratory) Xiao Guanfei (Science and Technology on Reactor System Design Technology Laboratory) He Zhen (Science and Technology on Reactor System Design Technology Laboratory) Chen Zhenping (University of South China) Yu Tao (University of South China)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제55권 제6호
발행연도
2023.6
수록면
2,215 - 2,221 (7page)
DOI
10.1016/j.net.2023.02.018

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In order to further meet the requirements of weight, volume, and dose minimization for new nuclear energy devices, the bare-bones multi-objective particle swarm optimization algorithm is used to auto matically and iteratively optimize the design parameters of radiation shielding system material, thick ness, and structure. The radiation shielding optimization program based on the bare-bones particle swarm optimization algorithm is developed and coupled into the reactor radiation shielding multi objective intelligent optimization platform, and the code is verified by using the Savannah benchmark model. The material type and thickness of Savannah model were optimized by using the BBMOPSO al gorithm to call the dose calculation code, the integrated optimized data showed that the weight decreased by 78.77%, the volume decreased by 23.10% and the dose rate decreased by 72.41% compared with the initial solution. The results show that the method can get the best radiation shielding solution that meets a lot of different goals. This shows that the method is both effective and feasible, and it makes up for the lack of manual optimization

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0