메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이근형 (성균관대학교 SAIHST) 박종걸 (에비드넷) 김지형 (에비드넷) 김이석 (한양대학교) 최병진 (아주대학교) 박래웅 (아주대학교) 이상열 (경희의료원) 신수용 (성균관대학교)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제29권 제2호
발행연도
2023.4
수록면
168 - 173 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Since protecting patients’ privacy is a major concern in clinical research, there has been a growing need for privacy-preserving data analysis platforms. For this purpose, a federated learning (FL) method based on the Observational MedicalOutcomes Partnership (OMOP) common data model (CDM) was implemented, and its feasibility was demonstrated. Methods: We implemented an FL platform on FeederNet, which is a distributed clinical data analysis platform based on theOMOP CDM in Korea. We trained it through an artificial neural network (ANN) using data from patients who received steroidprescriptions or injections, with the aim of predicting the occurrence of side effects depending on the prescribed dose. The ANN was trained using the FL platform with the OMOP CDMs of Kyung Hee University Medical Center (KHMC) andAjou University Hospital (AUH). Results: The area under the receiver operating characteristic curves (AUROCs) for predictingbone fracture, osteonecrosis, and osteoporosis using only data from each hospital were 0.8426, 0.6920, and 0.7727 forKHMC and 0.7891, 0.7049, and 0.7544 for AUH, respectively. In contrast, when using FL, the corresponding AUROCs were0.8260, 0.7001, and 0.7928 for KHMC and 0.7912, 0.8076, and 0.7441 for AUH, respectively. In particular, FL led to a 14%improvement in performance for osteonecrosis at AUH. Conclusions: FL can be performed with the OMOP CDM, and FLoften shows better performance than using only a single institution's data. Therefore, research using OMOP CDM has beenexpanded from statistical analysis to machine learning so that researchers can conduct more diverse research.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0