메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Wang Yi-Hang (State Key Laboratory of Oil-Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China) Li Xiao-Ping (State Key Laboratory of Oil-Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China) Yin Li-Shi (No. 4 Gas Production Plant of Southwest Oil and Gas Branch Sinopec ChongQing China) Wang Kun (No. 4 Gas Production Plant of Southwest Oil and Gas Branch Sinopec ChongQing China) Xie Jing (No. 4 Gas Production Plant of Southwest Oil and Gas Branch Sinopec ChongQing China) Li Zhi-Li (No. 4 Gas Production Plant of Southwest Oil and Gas Branch Sinopec ChongQing China)
저널정보
한국자원공학회 Geosystem Engineering Geosystem Engineering Vol.26 No.3
발행연도
2023.6
수록면
85 - 99 (15page)
DOI
10.1080/12269328.2023.2194884

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Onshore shale oil is difficult to develop due to its special pore structure and low permeability characteristics. Artificial fracturing causes a large amount of fracturing fluid to intrude into the reservoir, resulting in a complex reservoir seepage pattern. Therefore, this paper aims to explore the changes in the reservoir at the macro and micro levels due to the interaction between fracturing fluids and shale oil reservoirs. For this, four rock samples from shale oil reservoirs and two fracturing fluids commonly used in the mine were used. Then, core repulsion, scanning electron microscopy, X-ray diffraction and CT scanning experiments were carried out successively. The following results were derived from our analyses. (1) Permeability of the rock samples was reduced by an average of 24.47% after replacement by fracturing fluid, while the experimental groups with larger fluid-grain sizes and well-developed fracture networks suffered more significant solid-phase damage and fluid-phase trapping. (2) Fracturing fluids have different effects on fractures at different scales; large fractures (>7.71 μm) were widened, while small fractures (<3.47 μm) were shrunk or even plugged. (3) Based on the water-sensitive effect, fracturing fluids can disperse and transport clay minerals, resulting in fluid-phase damage and an average decrease of 14.33% in clay content in the reservoir. (4) Analysis of the digital core model shows that fracturing fluid intrusion and retention can cause solid-phase damage to the reservoir matrix, with 38.14% and 60% damage to the pore and throat channels, respectively. This paper uses a combination of physical experiments and numerical analysis to investigate the interaction mechanism between fracturing fluids and shale oil reservoirs from both microscopic and macroscopic perspectives. Overall, the results of this study provide experimental support for future studies on the seepage characteristics of this type of reservoir and the design of fracturing construction schemes.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0