메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최형선 (가천대학교 컴퓨터공학과) 김재승 (가천대학교 길병원 헬스IT연구센터) 황보택근 (가천대학교) 김계환 (충남대학교)
저널정보
대한배뇨장애요실금학회 International Neurourology Journal International Neurourology Journal 제27권
발행연도
2023.5
수록면
21 - 26 (6page)
DOI
10.5213/inj.2346110.055

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Urolithiasis is a common disease that can cause acute pain and complications. The objective of this study was to de velop a deep learning model utilizing transfer learning for the rapid and accurate detection of urinary tract stones. By employ ing this method, we aim to improve the efficiency of medical staff and contribute to the progress of deep learning-based medi cal image diagnostic technology. Methods: The ResNet50 model was employed to develop feature extractors for detecting urinary tract stones. Transfer learn ing was applied by utilizing the weights of pretrained models as initial values, and the models were fine-tuned with the provid ed data. The model’s performance was evaluated using accuracy, precision-recall, and receiver operating characteristic curve metrics. Results: The ResNet-50-based deep learning model demonstrated high accuracy and sensitivity, outperforming traditional methods. Specifically, it enabled a rapid diagnosis of the presence or absence of urinary tract stones, thereby assisting doctors in their decision-making process. Conclusions: This research makes a meaningful contribution by accelerating the clinical implementation of urinary tract stone detection technology utilizing ResNet-50. The deep learning model can swiftly identify the presence or absence of uri nary tract stones, thereby enhancing the efficiency of medical staff. We expect that this study will contribute to the advance ment of medical imaging diagnostic technology based on deep learning.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0