메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim GeunSub (Port Research Department Korea Maritime Institute Busan 49111 Republic of Korea) 이건우 (한양대학교) An Seunghyun (Korea Maritime Institute 26 Haeyang-ro 301beon-gil Yeongdo-gu Busan 49111 the Republic of Korea) Lee Joowon (Korea Maritime Institute 26 Haeyang-ro 301beon-gil Yeongdo-gu Busan 49111 the Republic of Korea)
저널정보
한국해운물류학회 The Asian Journal of Shipping and Logistics The Asian Journal of Shipping and Logistics Vol.39 No.2
발행연도
2023.6
수록면
78 - 93 (16page)
DOI
10.1016/j.ajsl.2023.04.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
As smart and environmentally friendly technologies and equipment are introduced in the sea port industry, electric power consumption is expected to rapidly increase. However, there is a paucity of research on the creation of electric power management plans, specifically in relation to electric power consumption fore casting, in ports. In order to address this gap, this study forecasts future electric power consumption in Busan New Port (South Korea’s largest container port) and, comparing this with the current standard electric power supply capacity, investigated the feasibility of maintaining a stable electric power supply in the future. We applied a Long Short-Term Memory (LSTM) model trained using electric power consumption and throughput data of the last 10 years to forecast the future electric power consumption of Busan New Port. According to the results, electric power consumption is expected to increase at an annual average of 4.9 % until 2040, exceeding the predicted annual 4.7 % increase in throughput during the same period. Given these results, the current standard electric power supply capacity is forecast to reach only 35 % of demand in 2040, indicating that additional electrical power supply facilities will be needed for stable port operation in the future.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0