메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정은경 (전남대학교 의과대학 의학교육학교실) 한의령 (전남대학교 의과대학 의학교육학교실)
저널정보
연세대학교 의과대학 의학교육논단 의학교육논단 제25권 제2호
발행연도
2023.6
수록면
126 - 131 (6page)
DOI
10.17496/kmer.23.008

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The aim of this study was to systematically collect data for evaluating short- and long-term outcomes using Kirkpatrick’s four-level evaluation model, Chonnam National Medical School has established plans for developing and managing a database of student and graduate cohorts. The Education Evaluation Committee, with assistance from the Medical Education Office, manages the development and maintenance of cohort data. Data collection began in the 2022 academic year with first- through fourth-year medical students and graduates of the year 2022. The collected data include sociodemographic characteristics, admission information, psychological test results, academic performance data, extracurricular activity data, scholarship records, national medical licensing exam results, and post-graduation career paths. The Education Evaluation Committee and the Medical Education Office analyze the annually updated student and graduate cohort data and report the results to the dean and relevant committees. These results are used for admissions processes, curriculum improvement, and the development of educational programs. Applicants interested in using the student and graduate cohort data to evaluate the curriculum or conduct academic research must undergo review by the Educational Evaluation Committee before being granted access to the data. It is expected that the collected data from student and graduate cohorts will provide a sound and scientific basis for evaluating short- and long-term achievements based on student, school, and other characteristics, thereby supporting medical education policies, innovation, and implementation.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0