메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Santiago Gómez (Universidad Industrial de Santander) David Romo‑Bucheli (Universidad Industrial de Santander) Fabio Martínez (Universidad Industrial de Santander)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.12 No.1
발행연도
2022.2
수록면
75 - 84 (10page)
DOI
https://doi.org/10.1007/s13534-021-00212-w

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Cardiac cine-MRI is one of the most important diagnostic tools used to assess the morphology and physiology of the heart during the cardiac cycle. Nonetheless, the analysis on cardiac cine-MRI is poorly exploited and remains highly dependent on the observer's expertise. This work introduces an imaging cardiac disease representation, coded as an embedding vector, that fully exploits hidden mapping between the latent space and a generated cine-MRI data distribution. The resultant representation is progressively learned and conditioned by a set of cardiac conditions. A generative cardiac descriptor is achieved from a progressive generative-adversarial network trained to produce MRI synthetic images, conditioned to several heart conditions. The generator model is then used to recover a digital biomarker, coded as an embedding vector, following a backpropagation scheme. Then, an UMAP strategy is applied to build a topological low dimensional embedding space that discriminates among cardiac pathologies. Evaluation of the approach is carried out by using an embedded representation as a potential disease descriptor in 2296 pathological cine-MRI slices. The proposed strategy yields an average accuracy of 0.8 to discriminate among heart conditions. Furthermore, the low dimensional space shows a remarkable grouping of cardiac classes that may suggest its potential use as a tool to support diagnosis. The learned progressive and generative representation, from cine-MRI slices, allows retrieves and coded complex descriptors that results useful to discriminate among heart conditions. The cardiac disease representation expressed as a hidden embedding vector could potentially be used to support cardiac analysis on cine-MRI sequences.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0