메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jwo-Luen Pao (Department of Orthopedic Surgery Far-Eastern Memorial Hospital)
저널정보
대한척추신경외과학회 Neurospine Neurospine 제20권 제1호
발행연도
2023.3
수록면
80 - 91 (12page)
DOI
10.14245/ns.2346036.018

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: To describe the surgical techniques and the treatment outcomes of biportal en doscopic transforaminal lumbar interbody fusion (BETLIF) using double cages. Methods: This study included 89 patients with 114 fusion segments between July 2019 and May 2021. One pure polyetheretherketone (PEEK) cage and 1 composite titanium-PEEK cage were used for interbody fusion. Clinical outcomes measures included visual analogue scale (VAS) scores for lower back pain and leg pain, Oswestry Disability Index (ODI), and Japanese Orthopedic Association (JOA) scores. Computed tomography (CT) of the lumbar spine 1 year postoperatively was used to evaluate the Bridwell interbody fusion grades. Results: There were significant improvement in VAS for lower back pain from 5.2 ± 3.1 to 1.7 ± 2.1, VAS for leg pain from 6.3 ± 2.5 to 1.7 ± 2.0, ODI from 46.7 ± 17.0 to 12.7 ± 16.1, and JOA score from 15.6 ± 6.3 to 26.4 ± 3.2. The p-values were all < 0.001. The average hospital stay was 5.7 ± 1.1 days. The CT studies available for 60 fusion segments showed successful fusion (Bridwell grade I or grade II) in 56 segments (93.3%). Significant cage sub sidence of more than 2 mm was only noted in 3 segments (5.0%). Complications included 1 dural tear, 2 pedicle screws malposition, and 2 epidural hematomas, in which 2 patients required reoperations. Conclusion: BETLIF with double cages provided good neural decompression and a sound environment for interbody fusion with a big cage footprint, a large amount of bone graft, endplate preservation, and segmental stability.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0