메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최명균 (전남의대 산부인과) 조은별 (Department of Obstetrics and Gynecology Chonnam National University Medical School Gwangju Korea) 김종운 (전남대학교) 김윤하 (전남대학교)
저널정보
대한주산의학회 Perinatology Perinatology Vol.34 No.2
발행연도
2023.6
수록면
69 - 75 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: The aim of this study was to develop a model to predict massive hemorrhage during cesarean section in pregnant women of previous cesarean section with placenta previa. Based on this model, we developed an equation of massive hemorrhage in pregnant women of previous cesarean section with placenta previa. Methods: We retrospectively reviewed 218 patients with previous cesarean section and placenta previa who underwent cesarean section from January 2011 to December 2021. Massive hemorrhage was defined as a blood loss exceeding 2,000 mL during operation. The data was analyzed by independent t-test, Pearson chi-squared test. Multivariate logistic regression analysis was used to develop a predictive model and identify factors predictive for massive hemorrhage. Results: A total of 53 patients (24.3%) had massive hemorrhage. Number of parity, anterior placenta, presence of lacuna, abnormalities of uterine serosa-bladder interface, extension of placenta into myometrium, serosa and bladder were selected predictive factors to develop a model to predict massive hemorrhage. Based on this model, an equation was developed and tested for performance. This model using five predictive factors yielded an area under the receiver operating characteristics curve of 0.886 (95% confidence interval, 0.83-0.93). Conclusion: Application of this predictive model may provide an effective prediction of massive hemorrhage in patients of previous cesarean section with placenta previa. Adequate preoperative preparation, intraoperative strategies, postoperative care can be indicated based on this model.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0