메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Y Raghuvamsi (NIT Andhra Pradesh) Kiran Teeparthi (NIT Andhra Pradesh) Sreenadh Batchu (NIT Andhra Pradesh)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,628 - 1,633 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Distribution system state estimation (DSSE) is a numerical procedure that estimates the state variables of a system using a sparse set of measurable data at certain points in the system. However, DSSE encounters significant convergence-related difficulties as a result of insufficient real-time measurements. To tackle these issues, this paper employs deep neural networks as a computational framework for DSSE. To deal with large datasets, deep learning (DL) models such as convolutional neural networks (CNNs) and multi-layer perceptron networks are developed for estimating the states from measurement data. However, the presence of missing samples among the input measurement data
significantly affects the performance of the DL models. Therefore one of the advanced DL models namely, the transformer model is developed for missing data imputation using a forecasting task. The functioning of DL models is enhanced by replacing the missing samples with forecasted data of the transformer model and comparison is done with other machine learning algorithms. The simulation works have been carried out on IEEE 37-node unbalanced distribution test system. According to numerical findings, the CNN model achieves better results in identifying the nonlinear relationship between measurement data and states, and the transformer model achieves robust performance against missing samples.

목차

Abstract
1. INTRODUCTION
2. BACKGROUND
3. METHODOLOGY
4. SIMULATION RESULTS AND DISCUSSIONS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088266213