메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이정현 (서울대학교) 노종선 (서울대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제33권 제6호
발행연도
2023.12
수록면
861 - 868 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
보안을 유지하는 가운데 딥 러닝을 이용하여 데이터 분석 결과를 제공하는 서비스의 핵심적인 기술 중의 하나로 완전 동형 암호가 있다. 완전 동형 암호화된 데이터 간의 연산의 제약으로 인해 딥 러닝에 사용되는 비산술 함수를 다항식으로 근사해야 한다. 현재까지는 합성 미니맥스 다항식을 사용하여 비산술 함수를 근사한 다항식을 컨볼루션 뉴럴 네트워크에 적용했을 때 계층별로 같은 차수의 다항식만 적용하였는데, 이는 완전 동형 암호를 위한 효과적인 네트워크의 설계에 어려움을 준다. 본 연구는 합성 미니맥스 다항식으로 설계한 근사 다항식의 차수를 계층별로 서로 다르게 설정하여도 컨볼루션 뉴럴 네트워크에서 데이터의 분석에 문제가 없음을 이론적으로 증명하였다.

목차

요약
ABSTRACT
I. 서론
II. 배경 이론
III. 합성 미니맥스 다항식의 계층별 근사 변화의 적용 가능성
IV. 결론
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088524550