메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이승열 (호서대학교) 이현로 (호서대학교) 하재철 (호서대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제33권 제6호
발행연도
2023.12
수록면
907 - 917 (11page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 자율주행 자동차는 운전자 지원 시스템에 딥러닝 기술을 적용하여 운전자에게 편의성을 제공하고 있지만, 딥러닝 기술이 적대적 회피 공격(adversarial evasion attacks)에 취약함이 밝혀졌다. 본 논문에서는 객체 인식 알고리즘인 YOLOv5(You Only Look Once)를 대상으로 MI-FGSM (Momentum Iterative-Fast Gradient Sign Method)를 포함한 5가지 적대적 회피 공격을 수행하였으며 객체 탐지 성능을 mAP(mean Average Precision)로 측정하였다. 특히, 본 논문에서는 모폴로지 연산을 적용하여 적대적 공격으로부터 노이즈를 제거하고 경계선을 추출하여 YOLO가 객체를 정상적 탐지할 수 있는 방안을 제안하고 이를 실험을 통해 그 성능을 분석하였다. 실험 결과, 적대적 공격을 수행했을 때 YOLO의 mAP가 최소 7.9%까지 떨어져 YOLO가 객체를 정확하게 탐지하지 못하는 것을 87.3%까지 성능을 개선하였다.

목차

요약
ABSTRACT
I. 서론
II. 자율주행 자동차에서의 적대적 회피 공격
III. 적대적 회피 공격 실험 및 대응 분석
IV. 제안 방법
V. 적대적 공격 실험 및 모델 성능 평가
VI. 결론
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088524596