메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이영주 (호서대학교) 이승열 (호서대학교) 하재철 (호서대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제33권 제6호
발행연도
2023.12
수록면
919 - 928 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝 기술은 자율 주행 자동차, 이미지 생성, 가상 음성 구현 등 다양한 분야에서 활용되고 있으며 하드웨어 장치에서 고속 동작을 위해 딥러닝 가속기가 등장하게 되었다. 그러나 최근에는 딥러닝 가속기에서 발생하는 부채널 정보를 이용한 내부 비밀 정보를 복구하는 공격이 연구되고 있다. 본 논문에서는 DNN(Deep Neural Network) 기반 MNIST 숫자 분류기를 마이크로 컨트롤러에서 구현한 후 상관 전력 분석(Correlation Power Analysis) 공격을 시도하여 딥러닝 가속기의 가중치(weight)를 충분히 복구할 수 있음을 확인하였다. 또한, 이러한 전력 분석 공격에 대응하기 위해 전력 측정 시점의 정렬 혼돈(misalignment) 원리를 적용한 Node-CUT 셔플링 방법을 제안하였다. 제안하는 대응책은 부채널 공격을 효과적으로 방어할 수 있으며, Fisher-Yates 셔플링 기법을 사용하는 것보다 추가 계산량이 1/3보다 더 줄어듦을 실험을 통해 확인하였다.

목차

요약
ABSTRACT
I. 서론
II. 배경 지식
III. 내부 가중치 복구 실험
IV. 전력 분석 공격에 대한 셔플링 대응책
V. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088524603