메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
순위엔 (호북공정학원) 김지현 (서원대학교) 나미향 (청주대학교)
저널정보
한국의상디자인학회 한국의상디자인학회지 한국의상디자인학회지 제25권 제4호
발행연도
2023.12
수록면
107 - 122 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study analyzed the style, dimensions, fabric patterns, colors, and fabrics of a traditional Chinese women’s dress from the Zhou Dynasty, and reconstructed it in the form of a virtual garment using 3D CLO. Based on ancient flat image data and three-dimensional portrait data, who wore them, how they were worn, and how they were coordinated was analyzed. In order to analyze the size and pattern of the straight Ju Chines dress, data from the excavation report and the tomb owner’s anthropometric measurements were combined to infer the wearing condition and organize the sculptural features. Dimensional analysis was carried out using a well-preserved small-scale woven cotton cloth as a restoration model, and the horizontal and vertical dimensions were reasonably estimated using the shape proportioning method. The analysis of the colors and patterns of the fabrics was based on the colors and patterns of the fabrics excavated from Masan Tomb No. 1 during the Eastern Zhou, Qin, and Han periods. Finally, a virtual model was created using data from the excavation report and the age and height information of the owner of the excavated robe, and the pose and size of the virtual model were determined using 3D CLO. Based on the previous research data, the garment was virtually sewn and simulated. The shape, pressure, and strain of the garment in different postures was also compared. Through the research direction of pattern and 3D restoration, this research maximizes the restoration of Chinese traditional women’s dress and presents it in a more intuitive, comprehensive, and vivid way.

목차

Abstract
Ⅰ. 서론
Ⅱ. 연구범위 및 연구방법
Ⅲ. 직거심의 스타일·패턴·문양 분석
Ⅳ. 직거심의의 3D 가상 의상 복원
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089256962