메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강태호 (한국건설기술연구원) 최순욱 (한국건설기술연구원) 이철호 (한국건설기술연구원) 장수호 (한국건설기술연구원)
저널정보
한국암반공학회 터널과 지하공간 터널과 지하공간 제33권 제6호(통권 제167호)
발행연도
2023.12
수록면
547 - 560 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 국내외에서 기계학습 기법으로 TBM 굴진 데이터와 지반데이터를 분석하는 지반 분류예측 연구가 증가하고 있다. 본 연구에서는 다양한 분야에서 널리 사용되고 있는 머신러닝 기법들 중 의사결정트리 기반 랜덤포레스트 모델을 3곳의 이수식 TBM 현장에서 획득한 기계 데이터와 지반 데이터에 적용하여 일축압축강도에 대한 다중 분류예측 연구를 하였다. 일축압축강도의 다중 분류 예측을 위해서 학습과 테스트 데이터를 7:3으로 분할하였으며, 최적의 파라미터를 선정을 위해서 분할 교차검증을 포함하는 그리드 서치를 활용하였다. 의사 결정 트리를 기반으로 한 랜덤 포레스트를 사용하여 일축압축강도 분류학습을 수행한 결과, 다중 분류 예측 모델의 정확도는 학습 세트와 테스트 세트에서 각각 0.983 및 0.982로 모두 높게 나타났다. 다만, 클래스 간 데이터 분포의 불균형으로 인하여 클래스 4에서는 재현율이 낮게 평가되었다. 다양한 현장에서 획득한 일축압축강도의 측정 데이터양을 늘리는 연구가 필요한 것으로 판단된다.

목차

ABSTRACT
초록
1. 서론
2. 일축압축강도 분류와 분류학습 알고리즘
3. 일축압축강도 분류기준 및 데이터세트 구성
4. 분석 결과
5. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0