메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이형 (Daejeon Health Institute of Technology) 박철우 (GEO&) 이한동 (GEO&) 이준혁 (GEO&)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제1호(통권 제238호)
발행연도
2024.1
수록면
21 - 30 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 자율협력주행 인프라를 위해 제작된 8가지 센서 전용 시설물들에 대해 라이다로 취득한 포인트 클라우드 데이터로부터 시설물들의 특징을 추출하여 샘플 데이터셋으로 구축하는 방법을 제안한다. 고휘도 반사지가 부착된 8가지 센서 전용 시설물들과 데이터 취득 시스템을 개발했고, 취득된 포인트 클라우드 데이터로부터 일정한 측정 거리 내에 위치한 시설물들의 특징을 추출하기 위해 포인트 대상의 DBSCAN 방법과 반사강도 대상의 OTSU 방법을 응용하여 추려낸 포인트들에 원통형 투영법을 적용했다. 3차원 포인트 좌표, 2차원 투영 좌표, 그리고 반사강도 등을 해당 시설물의 특징으로 설정했고, 정답 레이블과 함께 데이터셋으로 제작했다. 라이다로 취득한 데이터를 기반으로 구축된 시설물 데이터셋의 효용 가능성을 확인하기 위해서 기본적인 CNN 모델을 선정하여 학습 후 테스트를 진행하여 대략 90% 이상의 정확도를 보여 시설물 인식 가능성을 확인했다. 지속적인 실험을 통해 제시한 데이터셋 구축을 위한 특징 추출 알고리즘의 개선 및 성능 향상과 더불어 이에 적합한 자율협력주행을 위한 센서 전용 시설물을 인식할 수 있는 전용 모델을 개발할 예정이다.

목차

Abstract
요약
I. Introduction
II. Facilities and Acquisition System
III. The Proposed Scheme
IV. Experiments
V. Conclusions and Discussion
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0