메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김준수 (창원대학교) 이혁 (창원대학교)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제17권 제1호
발행연도
2024.2
수록면
67 - 75 (9page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
복잡한 도시 환경에서 횡단보도는 보행자의 안전한 이동을 위해 중요한 역할을 한다. 하지만 시각 장애인에게는 횡단보도가 큰 위험 요소가 될 수 있다. 안전한 보행을 위한 점자 블록이나 음향 신호등과 같은 보조 시설들이 존재하지만, 부실한 관리로 인하여 때로는 오히려 안전을 저해하는 요소로 작용할 수 있다. 본 논문에서는 시각 장애인의 보행 보조를 위한 애플리케이션에 활용할 수 있는 딥러닝 기반 실시간 횡단보도 탐지 모델에 정확도 향상을 위한 방법을 제안한다. 횡단보도 이미지의 흰색 줄이 도로 표면과 대조를 이루는 특성을 활용하여 이미지를 이진화하고, 이를 통해 횡단보도를 더 잘 인식할 수 있게 하고 횡단보도 전체와 중간 부분을 각각 학습한 두 가지 모델을 활용하여 횡단보도의 위치를 더 정확하게 파악할 수 있도록 하였다. 또한 횡단보도를 인식하는 경계 상자를 전체와 부분의 두 단계로 생성하여 정확도를 높이고자 하였다. 이러한 방법을 통해 횡단보도 횡단 영상에서 RGB 이미지 학습에서 탐지 모델이 탐지하지 못한 프레임들을 추가로 탐지할 수 있었다.

목차

요약
Abstract
1. 서론
2. 학습 과정
3. 실험
4. 학습 모델 검증
5. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089442039