메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최건영 (한동대학교) 육현우 (서울대학교) 한정우 (서울대학교) 홍참길 (한동대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.51 No.5
발행연도
2024.5
수록면
406 - 413 (8page)
DOI
10.5626/JOK.2024.51.5.406

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 분자의 구조 정보를 이용하는 기존의 물성 예측 접근에 그래프 합성곱 신경망 모델을 병합하여 분자 임베딩을 생성, 이상적인 액상유기수소운반체 선정에 중요한 역할을 하는 탈수소화 엔탈피를 예측하는 연구를 소개한다. 제안하는 방법은 그래프 합성곱 모델 중 가장 좋은 표현력을 가진 것으로 알려진 그래프 동형 모델(Graph Isomorphism Network)을 사용했으며, 해당 모델을 통해 개별 분자를 구성하는 원자 정보를 바탕으로 분자 임베딩을 생성했을 때, 기존의 물리화학(chemical physics) 이론에 기반한 알고리즘에 비해 탈수소화 엔탈피를 예측하는데 더 적합한 임베딩을 생성할 수 있음을 관찰하였다. 또한 생략 연결 (skip connection)을 사용하여 깊은 그래프 합성곱 층을 구성할 수 있으며, 작은 배치 사이즈로 모델을 학습할 때 모델의 성능이 증가하는 경향성을 관찰한 내용을 보고한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안하는 방법
4. 실험 및 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089789126