메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Muhammad Sheraz (Soongsil University) Woojin Choi (Soongsil University)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2023-ECCE Asia
발행연도
2023.5
수록면
1,585 - 1,591 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Lithium-ion batteries are gaining more attention in the rapidly growing industry of electrical vehicles (EVs). Moreover, a lot of efforts are put by the industry to reuse retired EVs batteries in energy storage systems (ESS). To achieve optimal performance of the repurposed xEVs batteries in ESS, they should be similar in characteristic such as capacity, State of Health (SOH) and Remaining Useful Life (RUL). This makes the battery grading techniques to play a crucial role in it. Ohmic resistance measurement is a convenient way to evaluate the battery aging. However, conventional Electrochemical Impedance Spectroscopy (EIS) methods to measure ohmic resistance require complex curve fitting procedures while some others conventional methods are not much accurate. This research proposes a high-speed technique to measure ohmic resistance directly without using these curve fitting procedures. A Combined Phased Multi- Sine (CPMS) excitation is used to perturb the battery in specific frequency band. The require perturbation time is just 1 sec and ohmic resistance is measured using two impedance values. This makes the proposed technique several times faster than conventional EIS methods. The accuracy is verified by performing experiments on three types of Li-ion batteries. The obtain results shows less than 0.15% difference with reference conventional EIS method. This technique is suitable for grading mass xEVs batteries by evaluating their aging.

목차

Abstract
I. INTRODUCTION
II. CONVENTIONAL METHODS
III. PROPOSED TECHNIQUE OF OHMIC RESISTANCE MEASUREMENT
IV. PROPOSED TECHNIQUE’S HARDWARE AND SOFTWARE FRAMEWORK
V. EXPERIMENTAL VALIDATION AND DISCUSSION
CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0