메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박장한 (한화시스템)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제30권 제8호
발행연도
2024.8
수록면
853 - 862 (10page)
DOI
10.5302/J.ICROS.2024.24.0133

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To process large amounts of data due to the short revisit cycle characteristics of micro-satellite synthetic aperture radar (SAR) systems and to compensate for performance degradation due to weight reduction and miniaturization, the target identification must be improved through super-resolution (SR) for low-resolution (LR) satellite SAR images. In this paper, we generate SR satellite SAR images using the real-enhanced SR generative adversarial networks (Real-ESRGAN) for LR satellite SAR images and present the similarity of the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) for the segmentation with corresponding pairs based on key-points. SAR images are characterized by the location and intensity of major scattering points, unlike optical images. Therefore, it is necessary to understand the characteristics of the key-points detection method by considering the removal of clutter noise in the background and speckle noise around the target, outline, or boundary. Scale invariant feature transform (SIFT), speeded-up robust feature (SURF), binary robust invariant scalable key-points (BRISK), and oriented features from an accelerated segment test and rotated binary robust independent elementary features (ORB) are used as key-points detection methods, and the segmentation is generated for a local area with corresponding pairs based on key-points using the random sample consensus (RANSAC) method. As a result of the experiment, in the SR satellite SAR image, the PSNR in the segmentation with key-point- based corresponding pairs was high at the average 0.3850dB, and the SSIM was low at the average 0.0718, but when the background was included, the PSNR was maximum at 29.6937dB, and the SSIM was maximum at 0.5396.

목차

Abstract
I. 서론
II. 관련 연구
III. 제안된 특징점기반의 분할영역 및 대응쌍 생성
IV. 실험 및 결과분석
V. 결론 및 향후 계획
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090254858