메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zhengqi Tang (Chongqing University) Tao Wang (Harbin Institute of Technology) Zhengliang Li (Chongqing University)
저널정보
국제구조공학회 Structural Engineering and Mechanics, An Int'l Journal Structural Engineering and Mechanics, An Int'l Journal Vol.89 No.3
발행연도
2024.2
수록면
309 - 321 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, the effect of semi-rigid connections on the stability bearing capacity of cross-bracings in steel tubular transmission towers is investigated. Herein, a prediction method based on the hybrid model which is a combination of particle swarm optimization (PSO) and backpropagation neural network (BPNN) is proposed to accurately predict the stability bearing capacity of cross-bracings with semi-rigid connections and to efficiently conduct its probabilistic assessment. Firstly, the establishment of the finite element (FE) model of cross-bracings with semi-rigid connections is developed on the basis of the development of the mechanical model. Then, a dataset of 7425 samples generated by the FE model is used to train and test the PSO-BPNN model, and the accuracy of the proposed method is evaluated. Finally, the probabilistic assessment for the stability bearing capacity of cross-bracings with semi-rigid connections is conducted based on the proposed method and the Monte Carlo simulation, in which the geometric and material properties including the outer diameter and thickness of cross-sections and the yield strength of steel are considered as random variables. The results indicate that the proposed method based on the PSOBPNN model has high accuracy in predicting the stability bearing capacity of cross-bracings with semi-rigid connections. Meanwhile, the semi-rigid connections could enhance the stability bearing capacity of cross-bracings and the reliability of crossbracings would significantly increase after considering semi-rigid connections.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0