메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Nguyen Huy G. Nguyen Hoa T. Nguyen Linh T.T. Tran Thach S. Ho-Pham Lan T. Ling Sai H. Nguyen Tuan Van
저널정보
대한골다공증학회 Osteoporosis and Sarcopenia English Vol.10 No.1
발행연도
2024.3
수록면
22 - 27 (6page)
DOI
10.1016/j.afos.2024.01.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Vertebral fracture is both common and serious among adults, yet it often goes undiagnosed. This study aimed to develop a shape-based algorithm (SBA) for the automatic identification of vertebral fractures. Methods: The study included 144 participants (50 individuals with a fracture and 94 without a fracture) whose plain thoracolumbar spine X-rays were taken. Clinical diagnosis of vertebral fracture (grade 0 to 3) was made by rheumatologists using Genant’s semiquantitative method. The SBA algorithm was developed to determine the ratio of vertebral body height loss. Based on the ratio, SBA classifies a vertebra into 4 classes: 0 = normal, 1 = mild fracture, 2 = moderate fracture, 3 = severe fracture). The concordance between clinical diagnosis and SBAbased classification was assessed at both person and vertebra levels. Results: At the person level, the SBA achieved a sensitivity of 100% and specificity of 62% (95% CI, 51%–72%). At the vertebra level, the SBA achieved a sensitivity of 84% (95% CI, 72%–93%), and a specificity of 88% (95% CI, 85%–90%). On average, the SBA took 0.3 s to assess each X-ray. Conclusions: The SBA developed here is a fast and efficient tool that can be used to systematically screen for asymptomatic vertebral fractures and reduce the workload of healthcare professionals.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0