메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김준용 (Seoul Theological University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제8호(통권 제245호)
발행연도
2024.8
수록면
85 - 92 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 최신 객체 탐지 모델인 YOLOv10과 이전 버전들 간의 성능을 비교 분석하였다. YOLOv10은 NMS-Free 훈련, 향상된 모델 아키텍처, 효율성 중심의 설계 등을 도입하여 뛰어난 성능을 보인다. COCO 데이터셋을 사용한 실험 결과, 특히 YOLOv10-N은 2.3M의 적은 파라미터 수와 6.7G의 부동 소수점 연산(FLOPs)으로도 39.5%의 높은 정확도와 1.84ms의 낮은 지연 시간을 유지하였다. 주요 성능 지표로는 모델 파라미터 수, FLOPs, 평균 정확도(AP), 지연 시간을 사용하였다. 분석 결과, YOLOv10은 다양한 응용 분야에서 실시간 객체 탐지 모델로서의 효과성을 확인하였다. 향후 연구로는 다양한 데이터셋 테스트와 모델 최적화, 응용 사례 확대 등을 제안하였다. 이를 통해 YOLOv10의 범용성과 효율성을 더욱 높일 수 있을 것이다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Experience
V. Analysis
VI. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0