메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김준선 (National Korea Maritime & Ocean University) 서동욱 (National Korea Maritime & Ocean University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제73권 제9호
발행연도
2024.9
수록면
1,551 - 1,560 (10page)
DOI
10.5370/KIEE.2024.73.9.1551

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Due to the characteristic micro-motion of space-targets, a micro-Doppler effect occurs when a radar observes the space-target. The two-dimensional micro-Doppler signature image, which well represents the micro-Doppler effect, is used as a feature in classification using convolutional neural network in many literature. The angle of incidence of electromagnetic waves incident on a space-target is one of the information that can be obtained during radar observation. In this paper, we propose a method to improve the performance of the space-target classifier by using this angle of incidence as a feature in training a convolutional neural network model. The angle of incidence is input to the fully connected layer by concatenating it with the feature maps that are the output of the convolutional layer, and this was applied to ResNet-18 and a simple convolutional neural network model. Although the performance improvement in ResNet-18 was small compared to the simple model, it was clear in all cases, and classification accuracy was especially improved at low SNR. When the weight of the angle of incidence was set large, the F1-score showed a larger increase than when the dwell time was doubled, showing that it can be efficiently applied to space-target classification where decision-making must be completed within a short time.

목차

Abstract
1. 서론
2. 우주표적의 데이터셋
3. 제안하는 방법
4. 결과 및 분석
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090651777