메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sangwoo Park (Korea Military Academy) Kukjoo Kim (Defense Installations Agency) Dongku Kim (Korea Institute of Civil Engineering and Building Technology) Young‑Jun Park (Hyundai Engineering & Construction) Byul Shim (Hyundai Engineering & Construction)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.18 No.5
발행연도
2024.9
수록면
925 - 941 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, studies on blast-proof panels, which were attached to structures to protect facilities from local damage caused by explosions, have been actively performed. However, blast-proof panels are impractical yet due to the high installation cost and difficulty in construction, and protection performance for explosions inside a structure is not evaluated. In this study, a blast-proof panel consisting of concrete material was devised to ensure economic feasibility and constructability. Then, the protection performance of the concrete blast-proof panel for internal explosions was analyzed by numerical simulations and field experiments. First, field experiments on concrete explosionproof panels were conducted for two cases, where panels without and with energy-absorbing foam were installed. As a result, the concrete blast-proof panel reduced the displacement of structures by up to 22% and the acceleration of structures by up to 86%. However, the reliability of the field experiment data was insufficient due to the shear failure of the test structure during experiments. Therefore, additional analysis was conducted by developing a numerical model. A series of numerical simulations was conducted according to the various densities of the energy-absorbing foam that was inserted between the panel and structure. Consequently, the optimum density of the impact-absorbing material differed depending on the type of structure damage to reduce (i.e., the displacement or acceleration of the structure).

Highlights

• Concrete blast-proof panel was designed considering economic and constructability.
• Protection performance of panel was numerically and experimentally evaluated.
• The panel significantly reduced displacement and acceleration of structure against internal explosion.
• Density of energy-absorbing foam in panels should be designed based on protective target.

목차

Abstract
1 Introduction
2 Field Experiments for Concrete Blast‑Proof Panel
3 Numerical Analyses for Concrete Blast‑Proof Panel
4 Discussion
5 Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0