메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yi Shuang (College of Electrical Engineering & New Energy, China Three Gorges University) Zheng Sheng (College of Electrical Engineering & New Energy, China Three Gorges University) Yang Senquan (China Nuclear Industry Key Laboratory of Simulation Technology) Zhou Guangrong (College of Science, China Three Gorges University) He Junjie (College of Science, China Three Gorges University)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology Vol.56 No.4
발행연도
2024.4
수록면
1,284 - 1,295 (12page)
DOI
10.1016/j.net.2023.11.033

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Due to increasing operational security demands, digital and intelligent condition monitoring of nuclear power plants is becoming more significant. However, establishing an accurate and effective anomaly detection model is still challenging. This is mainly because of data characteristics of nuclear power data, including the lack of clear class labels combined with frequent interference from outliers and anomalies. In this paper, we introduce a Transformer-based unsupervised model for anomaly detection of nuclear power data, a modified loss function based on the maximum correntropy criterion (MCC) is applied in the model training to improve the robustness. Experimental results on simulation datasets demonstrate that the proposed Trans-MCC model achieves equivalent or superior detection performance to the baseline models, and the use of the MCC loss function is proven can obviously alleviate the negative effect of outliers and anomalies in the training procedure, the F1 score is improved by up to 0.31 compared to Trans-MSE on a specific dataset. Further studies on genuine nuclear power data have verified the model’s capability to detect anomalies at an earlier stage, which is significant to condition monitoring.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0