메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Sangyong Kim (Yeungnam University) Seungho Kim (Yeungnam University) Jae Min Lee (Yeungnam University) Moonyoung Choi (Yeungnam University)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal 제33권 제4호
발행연도
2024.4
수록면
313 - 323 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Deterioration of buildings is one of the biggest problems in modern society, and the importance of a safety diagnosis for old buildings is increasing. Therefore, most countries have legal maintenance and safety diagnosis regulations. However, the reliability of the existing safety diagnostic processes is reduced because they involve subjective judgments in the data collection. In addition, unstructured tasks increase rework rates, which are time-consuming and not cost-effective. Therefore, This paper proposed the method that can calculate the safety grade of deterioration automatically. For this, a DNN structure is generated by using existing precision inspection data and precision safety diagnostic data, and an objective building safety grade is calculated by applying status evaluation data obtained with a UAV, a laser scanner, and reverse engineering 3D models. This automated process is applied to 20 old buildings, taking about 40% less time than needed for a safety diagnosis from the existing manual operation based on the same building area. Subsequently, this study compares the resulting value for the safety grade with the already existing value to verify the accuracy of the grade calculation process, constructing the DNN with high accuracy at about 90%. This is expected to improve the reliability of aging buildings in the future, saving money and time compared to existing technologies, improving economic efficiency.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0