메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
고재준 (서울대학교) 송인홍 (서울대학교) 이혁진 (서울대학교 농업생명과학연구원) 박진석 (서울대학교 생태조경ㆍ지역시스템공학부) 장성주 (서울대학교) 이종혁 (서울대학교) 김동우 (서울대학교)
저널정보
한국농공학회 한국농공학회논문집 한국농공학회논문집 제66권 제3호
발행연도
2024.5
수록면
1 - 14 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Gaining an accurate 3D stream geometry has become feasible with Unmanned Aerial Vehicle (UAV), which is crucial for better understanding streamhydrodynamic processes. The objective of this study was to investigate series of filters to remove stream vegetation and propose the best method forgenerating Digital Terrain Models (DTMs) using UAV-based point clouds. A stream reach approximately 500 m of the Bokha stream in Icheon citywas selected as the study area. Point clouds were obtained in August 1st, 2023, using Phantom 4 multispectral and Zenmuse L1 for Structure fromMotion (SfM) and Light Detection And Ranging (LiDAR) respectively. Three vegetation filters, two morphological filters, and six composite filters whichcombined vegetation and morphological filters were applied in this study. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) wereused to assess each filters comparing with the two cross-sections measured by leveling survey. The vegetation filters performed better in SfM, especiallyfor short vegetation areas, while the morphological filters demonstrated superior performance on LiDAR, particularly for taller vegetation areas. Overall,the composite filters combining advantages of two types of filters performed better than single filter application. The best method was the combinationof Progressive TIN (PTIN) and Color Indicies of Vegetation Extraction (CIVE) for SfM, showing the smallest MAE of 0.169 m. The proposed methodin this study can be utilized for constructing DTMs of stream and thus contribute to improving the accuracy of stream hydrodynamic simulations.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0