메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Maryani Herti (Research Center for Population, National Research and Innovation Agency, Jakarta, Indonesia) Rizkianti Anissa (Research Center for Population, National Research and Innovation Agency, Jakarta, Indonesia) Izza Nailul (Research Center for Public Health and Nutrition, National Research and Innovation Agency, Surabaya, Indonesia)
저널정보
대한예방의학회 예방의학회지 예방의학회지 제57권 제3호
발행연도
2024.5
수록면
234 - 241 (8page)
DOI
10.3961/jpmph.23.497

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Health development is a key element of national development. The goal of improving health development at the societal level will be readily achieved if it is directed from the smallest social unit, namely the family. This was the goal of the Healthy Indonesia Program with a Family Approach. The objective of the study was to analyze variables of family health indicators across all provinces in Indonesia to identify provincial disparities based on the status of healthy families.Methods: This study examined secondary data for 2021 from the Indonesia Health Profile, provided by the Ministry of Health of the Republic of Indonesia, and from the 2021 welfare statistics by Statistics Indonesia (BPS). From these sources, we identified 10 variables for analysis using the k-means method, a non-hierarchical method of cluster analysis.Results: The results of the cluster analysis of healthy family indicators yielded 5 clusters. In general, cluster 1 (Papua and West Papua Provinces) had the lowest average achievements for healthy family indicators, while cluster 5 (Jakarta Province) had the highest indicator scores.Conclusions: In Indonesia, disparities in healthy family indicators persist. Nutrition, maternal health, and child health are among the indicators that require government attention.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0