메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Umar Zaman (Chungnam National University) Junaid Khan (Chungnam National University) Jebin Ku (Chungnam National University) Sanha Kim (Chungnam National University) Eunkyu Lee (Chungnam National University) Kyungsup Kim (Chungnam National University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2024 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.15 No.1
발행연도
2024.1
수록면
141 - 145 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Predicting ship trajectories can effectively predict navigation trends and enable the orderly management of ships, which holds immense significance for maritime traffic safety. This paper introduces a novel ship trajectory prediction method based on CNN and DNN (Convolutional Neural Network and Deep Neural Network). Our research in this paper comprises two main parts: the first part involves preprocessing the large raw AIS dataset to extract the features, while the second part focuses on trajectory prediction. CNN and DNN serve as prediction models, utilizing trajectory data sourced from the Automatic Identification System (AIS). These models are employed to train and learn the regular patterns within ship trajectory data, allowing them to predict the trajectories for the next hour. Experimental results reveal that CNN has significantly reduced the Mean Absolute Error (MAE) and Mean Square Error (MSE) of ship trajectory prediction to 0.0334 and 0.0795, respectively, when compared to other deep learning algorithms. This improvement effectively enhances the accuracy of trajectory prediction.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. PROPOSED METHOD
Ⅲ. RESULT AND DISCUSSION
Ⅳ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0