메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
우건후 (성균관대학교) 김태성 (성균관대학교)
저널정보
대한설비공학회 대한설비공학회 학술발표대회논문집 대한설비공학회 2023년도 하계학술발표대회 논문집
발행연도
2023.6
수록면
176 - 180 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The recent outbreak of coronavirus has raised people’s awareness of respiratory diseases by creating unprecedentedly high infection rates and deaths. Accordingly, the importance of indoor air quality management and the need for regulations have emerged, and various indoor air quality management activities such as ventilation and mask wearing have been carried out. However, unlike these efforts, real-time analysis of internal airborne bioaerosols still needs a lot of improvement. The naturally very low concentration of bioaerosols makes them unsuitable for existing biosensor research in development, which requires highly concentrated liquid samples. Therefore, it is necessary to collect high concentration of bioaerosol with liquid form in real time. In this study, by utilizing cyclone sampler, continuous sampling obtaining highly concentrated bioaerosol sample can be achieved rather than the existing discontinuous impactor method, and a study was conducted to implement real-time analysis based on silicon nanowire biosensor. Structural optimization was performed based on computational fluid dynamics analysis of the air flow inside the bioaerosol sampler, and the performance was investigated using Aspergillus niger fungus and standard particles, which show a low cut-off size of 0.5 um. Finally, possibility of real-time analysis was confirmed through continuous collection test. The proposed technology is expected to make a significant contribution to the systematic management of indoor air quality management and the prevention of respiratory diseases through linkage with internet of things technology.

목차

Abstract
1. 서론
2. 수치해석
3. 실험 분석
4. 결론
5. Acknowledgement
6. References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0