메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Deng, Ai (Dongseo University) Seo, Han Sok (Dongseo University)
저널정보
한국전시산업융합연구원 한국과학예술융합학회 한국과학예술융합학회 Vol.42 No.5
발행연도
2024.12
수록면
101 - 114 (14page)
DOI
10.17548/ksaf.2024.12.30.101

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study began with the aim of addressing global healthcare challenges—aging populations, resource shortages, and regional disparities—by integrating artificial intelligence (AI) into telemedicine. The objective was to explore the application of AI-driven telemedicine in Asia, the United States, and Europe to enhance healthcare accessibility, efficiency, and diagnostic accuracy.
The study adopted a mixed-methods approach, including surveys and qualitative case studies. The surveys covered 50 healthcare professionals, 100 elderly patients, and 50 AI developers, focusing on system usability, trust in AI, data privacy, and ethical concerns. The qualitative case studies analyzed the current state and exemplary practices of telemedicine in each region.The findings revealed significant regional differences: Asia's market is rapidly developing, the United States features a mature system constrained by regulatory barriers, and Europe prioritizes data privacy and compliance. Common challenges identified across regions include trust in AI, safeguarding sensitive data, and improving overall system usability. These challenges highlight the need to enhance transparency in AI decision-making processes and implement stronger data protection measures. Based on the findings, the study recommends the following: Customize system features to meet regional needs and improve user experience. Strengthen data privacy protections through advanced technologies and robust policy frameworks. Establish clear ethical guidelines to improve transparency and foster user trust in AI-driven telemedicine systems. This study offers practical recommendations for the development of AI-powered telemedicine systems tailored to diverse global contexts.

목차

Abstract
I. Introduction
II. Literature Review
Ⅲ. Case Study of AI Design in Telemedicine
IV. Survey Analysis
V. Conclusion and Recommendations
Reference

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092211972