메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Prisha Patel (Symbiosis International) Sakshi Chauhan (Symbiosis International) Shaurya Gupta (Symbiosis International) Tawishi Gupta (Symbiosis International) Renuka Agrawal (Symbiosis International)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.24 No.4
발행연도
2024.12
수록면
333 - 342 (10page)
DOI
10.5391/IJFIS.2024.24.4.333

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The automobile insurance industry faces significant challenges in detecting fraudulent activities because of the imbalanced nature of fraud data, which traditional machine learning algorithms struggle to address effectively. In this study, to improve the efficiency of fraud detection, we investigated three approaches: the Synthetic Minority Oversampling TEchnique (SMOTE), generative adversarial networks (GANs), and a hybrid approach combining SMOTE with GANs (SMOTEfied-GAN). SMOTE addresses the class imbalance by oversampling the minority class, whereas GANs generate synthetic data that resemble the training data distribution. The SMOTEfied-GAN combines the strengths of both methods by oversampling the minority class using SMOTE before training the GAN to enhance the quality of the synthetic samples. A comparative analysis was conducted on these approaches using a dataset from the automobile insurance industry. Our evaluation included metrics, such as precision, recall and F1-score. These findings suggest that each approach offers unique advantages in improving fraud-detection efficiency.

목차

Abstract
1. Introduction
2. Literature Review
3. Methodology
4. Results and Discussion
5. Conclusion and Future Work
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092159351