메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Torky Althaqafi (University of Jeddah)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.24 No.4
발행연도
2024.12
수록면
343 - 359 (17page)
DOI
10.5391/IJFIS.2024.24.4.343

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Supply chain management (SCM) requires risk analysis for the sustainable development of organizations such as retail, healthcare, information technology, and media. SCM has set ambitious goals and requirements for organizations to increase their share of productivity. However, considering the various criteria and factors involved in the process, selecting and deciding on the optimal SCM source can be challenging for organizations. In addressing this challenge, selection priority and risk analysis factors in SCM and alternatives are important. This challenge was resolved using the hesitant fuzzy-analytic hierarchy process (HF-AHP) and hesitant fuzzy-technique for order preference by similarity to ideal solution (HF-TOPSIS). The proposed approach considers numerous criteria, assigning weights using the HF-AHP method. Natural disasters are assigned the highest weight and geopolitical uncertainty the lowest weight. Within these groups, among subfactors, hurricane has the highest weight and economic conditions the lowest weight. HF-TOPSIS ranks the SCM alternatives, whereby systematic SCM has the highest priority and mitigation strategy the lowest priority. The proposed strategy can maintain the dynamics of choosing the ideal SCM, providing significant knowledge to policymakers and SCM partners.

목차

Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
4. Methodology (HF-TOPSIS)
5. Data Analysis
6. Sensitivity Analysis
7. Comparison
8. Results
9. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092154230